Poker Probability Royal Flush
Getting a royal flush is the hardest hand to obtain when playing poker online or in a casino. If you’re wondering what your odds are of being dealt a royal flush and other hands, you’ve come to the right place. We’ve developed this page to equip you with all the information you need to know about your poker hand odds.
Once a royal flush is selected for player A, there are 47C5 possible hands for player B. Only 3 of these hands are royal flushes, namely 10, J, Q, K, A of all the same suit, different from the suit for player A. So P(B gets royal flush, given A gets royal flush) = 3/(47C5). Thus, P(A and B both get royal flushes) = P(A gets a royal flush). P(B. Getting a royal flush = 1 in 649,740 odds Starting with 4 royal flush cards = 1 in 2,777 3 RFCs = 1 in 92 2 RFCs = 1 in 13 1 RFC = 1 in 6. Drawing to a Royal. We just discussed how players can receive certain parts of a royal flush and improve their opportunities of getting video poker's best hand.
In this detailed guide about your odds of being dealt a royal flush and other hands while playing poker, we’ll provide you with tons of information. You can check out the preview below to get an idea of everything we’ll cover. Feel free to click on one of these section titles if you want to jump ahead.
Breakdown of Potential Poker Hands
Before we dive into royal flush odds and other hands, we wanted to first ensure you’ve got a good understanding of the different hands possible when playing poker. Check out the sections below to look over all the different poker hands. We’ve listed them in the order of their rank when playing the game.
No Pair
This one should be pretty obvious. In casino poker and online poker, if you don’t have a single pair or higher in your hand, you have what’s considered a “no pair” hand. In this case, your hand’s value will depend on the highest card you’ve got.
Single Pair
If you end up getting a one pair hand, it means you’ve got two card values that match in your hand. For example, if you have two 4s, you have a single pair of 4s. While this isn’t a powerful poker hand, it does outrank anyone who has a no pair hand.
Two Pair
Kicking things up a slight notch from a single pair would be a two pair hand. In this scenario, you have two sets of matching card values. As an example, if you have two Ks and two 10s in your hand, it would be a two pair hand. In turn, it would outrank any players with just a single pair or no pair.
Three of a Kind
As the name implies, a poker hand that counts as three of a kind has three cards of the same value. For example, if you have three jacks in your hand, this would create a three of a kind poker hand. If you end up with the three of a kind hand, you’ll have a better hand than no pair, single pair, and two pair hands.
Straight (Not Royal or Flush)
Up next on the poker hand rank scale is a straight. Here, we’re only focused on standard straights, which means we’re not counting straights that are either flush or royal in nature (more on those in a moment). To make a straight, you’ll need all five cards in your hand to be in sequential order. As an example, if you had A, 2, 3, 4, and 5, you’d have a straight poker hand.

Flush (Not Straight or Royal)
Topping out straights and the other hands below it, a flush is another form of a poker hand. With a flush, you’ll have all five cards of your poker hand of the same suit. As an example, if all five cards in your hand are spades, you have a flush. For this particular hand, your cards do not count as a straight flush or a royal flush. We’ll touch on each of those below.
Full House
The next hand up the poker hand ranking scale is a full house. To make a full house with your hand, you’ll need to have a three of a kind paired with a two of a kind. If you have three 10’s and two 5’s, you’d have a full house.
Four of a Kind
One of the toughest hands to get when playing poker is a four of a kind. Here, you’ll need to have four cards of the same value in your hand. As an example, if you had four queens in your hand, you’ll have made a four of a kind poker hand. With four of a kind, there are only two other poker hands that can beat you.
Straight Flush (Not Royal)
Second from the top of the best poker hands possible is the straight flush. The flush portion of this name implies you’ll need all your cards to be of the same suit. However, to make a straight flush, they also must be in sequential order. For example, having 3, 4, 5, 6, and 7 of the same suit would provide you with a straight flush poker hand.
Royal Flush
The king of all poker hands is the royal flush. With a royal flush, it’s essentially a very specific straight flush. For starters, all your five cards must be the same suit. On top of that, it must be the 10, J, Q, K, and A of a particular suit to complete the royal flush.
Poker Hand Odds for Five-Card Games
Up first, we wanted to start by presenting you with your odds of being dealt a royal flush and other hands when playing five-card games of poker. Most notably, this will include Five-Card Stud Poker. We’ve included a chart below which showcases your odds of being dealt each hand in conjunction with the potential combinations and associated probability.
One thing worth noting is that the chart below showcases your odds of having one of the hands in a five-card poker game. This data does not account for any possibilities of wild cards or draws, which may be present in select games like Five-Card Draw.
Poker Hand | Odds | Combinations | Probablity |
---|---|---|---|
Royal Flush | 1 in 649,740 | 4 | 0.00015% |
Straight Flush | 1 in 72,192 | 36 | 0.00139% |
Four of a Kind | 1 in 4,165 | 624 | 0.02401% |
Full House | 1 in 693 | 3,744 | 0.14406% |
Flush | 1 in 508 | 5,108 | 0.19654% |
Straight | 1 in 254 | 10,200 | 0.39246% |
Three of a Kind | 1 in 46.2 | 54,912 | 2.11285% |
Two Pair | 1 in 21 | 123,552 | 4.75390% |
Single Pair | 1 in 1.37 | 1,098,240 | 42.25690% |
No Pair | 1 in 0.995 | 1,302,540 | 50.11774% |
Chart Labels
- Odds: The odds of being dealt the particular poker hand in a five-card game.
- Combinations: How many different ways the poker hand can be made using all 52 cards in the deck.
- Probability: The statistical probability of being dealt the hand in a five-card poker game.
As you can see from the chart above, you’ve got the highest chance of being dealt a no pair or single pair hand when playing a five-card variant of poker online or in a casino. Interestingly, there’s roughly a 50% chance you won’t have a pair or better.
However, you can see just how tough it can be to get some of the other higher-ranking poker hands. Even two pair hands only happen about 5% of the time. And if you’re hoping for a royal flush, the odds of it happening are minuscule.
Things More Likely to Happen Than Being Dealt a Royal Flush
Since the royal flush is the hardest poker hand to achieve, we wanted to provide you with some visualizations to help you grasp just how rare it is. Check out the list of things below, which are more likely to happen to you than being dealt a royal flush when playing a five-card variant of poker.
Getting in a Car Accident
1 in 103
Getting Audited by the
Internal Revenue Service (IRS)
1 in 175
Winning an Academy Award
1 in 11,500
Losing an Appendage
in a Chainsaw-Related Accident
1 in 4,464
Going to the ER
With a Pogo Stick-Related Injury
1 in 103
Poker Hand Odds for Seven-Card Games
Up next, we wanted to provide you with royal flush odds and other poker hands when playing seven-card versions of poker. If you’re into games like Seven-Card Stud and No Limit Texas Hold’em, this is the section for you.
While the addition of two extra cards to work with doesn’t sound like much to some, it creates a dramatic difference. Instead of just 2,598,960 potential hand combinations, playing poker with seven cards brings the possibility of 133,784,560 hands. That means there are more than 50 times as many possible hand combinations thanks to those extra two cards in play!
This chart focuses on your odds of being dealt one of these hands in a game of seven-card poker. As with the previous five-card section, the poker probability and odds below do not take into account wild cards and draws from specific versions of poker.
Poker Hand | Odds | Combinations | Probablity |
---|---|---|---|
Royal Flush | 1 in 30,939 | 4,324 | 0.00323% |
Straight Flush | 1 in 3,589 | 37,260 | 0.02785% |
Four of a Kind | 1 in 594 | 224,848 | 0.16807% |
Full House | 1 in 37.5 | 3,473,183 | 2.59610% |
Flush | 1 in 32.1 | 4,047,644 | 3.02549% |
Straight | 1 in 20.6 | 6,180,020 | 4.82987% |
Three of a Kind | 1 in 19.7 | 6,461,620 | 23.49554% |
Two Pair | 1 in 3.26 | 31,433,400 | 23.49554% |
Single Pair | 1 in 1.28 | 58,627,800 | 43.82255% |
No Pair | 1 in 4.74 | 23,294,460 | 17.41192% |
Chart Labels
- Odds: The odds of being dealt the particular poker hand in a seven-card game.
- Combinations: How many different ways the poker hand can be made using all 52 cards in the deck.
- Probability: The statistical probability of being dealt the hand in a seven-card poker game.
Immediately, you’ll probably notice how much better your odds of getting most hands are. In the next section, we’ll provide you with even more information about how much better your chances are for each of these hands if you play a seven-card variant instead of a five-card one.
Thanks to the additional two cards, offering you the chance to make your best five-card hand, there are more potential combinations which can help you improve your starting hand.
How Much Better Your Odds Are Playing Seven-Card Poker
Now that we’ve broken down the difference in royal flush odds and other poker hands between five- and seven-card poker games, we wanted to help you visualize just how much better your odds are when playing a seven-card game. Check out the chart below to see why you might opt to choose a seven-card game if you’re hoping to land a significant hand like a royal or straight flush.
Poker Hand | Percentage Increase |
---|---|
Royal Flush | 2000.00% |
Straight Flush | 1910.64% |
Four of a Kind | 600.00% |
Full House | 1702.13% |
Flush | 1439.38% |
Straight | 1077.02% |
Three of a Kind | 128.60% |
Two Pair | 394.24% |
Single Pair | 3.71% |
No Pair | -65.26% |
As you can see from the chart above, there’s a 2000% greater chance you’ll get a royal flush when playing a seven-card poker game instead of a five-card game. Other hands which have an increased chance of happening when you’re playing a seven-card variant of poker include the straight flush, full house, flush, and straight.
Interestingly, there’s one hand where you have a lower chance of getting it when playing a seven-card game of poker instead of a five-card game. That hand is the no pair hand. Intuitively, this makes sense since there are increased chances you’ll make at least a pair thanks to the expanded cards you’re playing with. In this case, your chance of getting a no pair hand is 65% less when playing a seven-card game as opposed to a five-card one.
Wrap Up
Thanks for stopping in to check out this page about poker probability and the odds of being dealt a royal flush when playing online poker and casino poker. If you’re planning to play poker soon, don’t miss our complete guide to real money poker. In it, you’ll find all sorts of helpful information, including terminology, strategies, and so much more.
If you enjoyed this page about the odds of getting a royal flush, you might also enjoy other pages we’ve developed in this series. Check out the choices below to explore some of our other “What Are the Odds?” pages.
Poker Probability Royal Flush Valves
POKER PROBABILITIES
- Texas Hold'em Poker
Texas Hold'em Poker probabilities - Omaha Poker
Omaha Poker probabilities - 5 Card Poker
5 Card Poker probabilities
POKER CALCULATOR
- Poker calculator
Poker odds calculator
POKER INFORMATION
- Poker hand rankings
Ranking of poker hands
Poker Probability Royal Flush Solution
In poker, the probability of each type of 5-card hand can be computed by calculating the proportion of hands of that type among all possible hands.
Frequency of 5-card poker hands
The following enumerates the (absolute) frequency of each hand, given all combinations of 5 cards randomly drawn from a full deck of 52 without replacement. Wild cards are not considered. The probability of drawing a given hand is calculated by dividing the number of ways of drawing the hand by the total number of 5-card hands (the sample space, five-card hands). The odds are defined as the ratio (1/p) - 1 : 1, where p is the probability. Note that the cumulative column contains the probability of being dealt that hand or any of the hands ranked higher than it. (The frequencies given are exact; the probabilities and odds are approximate.)
The nCr function on most scientific calculators can be used to calculate hand frequencies; entering nCr with 52 and 5, for example, yields as above.
Hand | Frequency | Approx. Probability | Approx. Cumulative | Approx. Odds | Mathematical expression of absolute frequency |
---|---|---|---|---|---|
Royal flush | 4 | 0.000154% | 0.000154% | 649,739 : 1 | |
Straight flush (excluding royal flush) | 36 | 0.00139% | 0.00154% | 72,192.33 : 1 | |
Four of a kind | 624 | 0.0240% | 0.0256% | 4,164 : 1 | |
Full house | 3,744 | 0.144% | 0.170% | 693.2 : 1 | |
Flush (excluding royal flush and straight flush) | 5,108 | 0.197% | 0.367% | 507.8 : 1 | |
Straight (excluding royal flush and straight flush) | 10,200 | 0.392% | 0.76% | 253.8 : 1 | |
Three of a kind | 54,912 | 2.11% | 2.87% | 46.3 : 1 | |
Two pair | 123,552 | 4.75% | 7.62% | 20.03 : 1 | |
One pair | 1,098,240 | 42.3% | 49.9% | 1.36 : 1 | |
No pair / High card | 1,302,540 | 50.1% | 100% | .995 : 1 | |
Total | 2,598,960 | 100% | 100% | 1 : 1 |

The royal flush is a case of the straight flush. It can be formed 4 ways (one for each suit), giving it a probability of 0.000154% and odds of 649,739 : 1.
When ace-low straights and ace-low straight flushes are not counted, the probabilities of each are reduced: straights and straight flushes each become 9/10 as common as they otherwise would be. The 4 missed straight flushes become flushes and the 1,020 missed straights become no pair.
Note that since suits have no relative value in poker, two hands can be considered identical if one hand can be transformed into the other by swapping suits. For example, the hand 3♣ 7♣ 8♣ Q♠ A♠ is identical to 3♦ 7♦ 8♦ Q♥ A♥ because replacing all of the clubs in the first hand with diamonds and all of the spades with hearts produces the second hand. So eliminating identical hands that ignore relative suit values, there are only 134,459 distinct hands.
The number of distinct poker hands is even smaller. For example, 3♣ 7♣ 8♣ Q♠ A♠ and 3♦ 7♣ 8♦ Q♥ A♥ are not identical hands when just ignoring suit assignments because one hand has three suits, while the other hand has only two—that difference could affect the relative value of each hand when there are more cards to come. However, even though the hands are not identical from that perspective, they still form equivalent poker hands because each hand is an A-Q-8-7-3 high card hand. There are 7,462 distinct poker hands.
Derivation of frequencies of 5-card poker hands
of the binomial coefficients and their interpretation as the number of ways of choosing elements from a given set. See also: sample space and event (probability theory).
- Straight flush — Each straight flush is uniquely determined by its highest ranking card; and these ranks go from 5 (A-2-3-4-5) up to A (10-J-Q-K-A) in each of the 4 suits. Thus, the total number of straight flushes is:
- Royal straight flush — A royal straight flush is a subset of all straight flushes in which the ace is the highest card (ie 10-J-Q-K-A in any of the four suits). Thus, the total number of royal straight flushes is
- or simply . Note: this means that the total number of non-Royal straight flushes is 36.
- Royal straight flush — A royal straight flush is a subset of all straight flushes in which the ace is the highest card (ie 10-J-Q-K-A in any of the four suits). Thus, the total number of royal straight flushes is
- Four of a kind — Any one of the thirteen ranks can form the four of a kind by selecting all four of the suits in that rank. The final card can have any one of the twelve remaining ranks, and any suit. Thus, the total number of four-of-a-kinds is:
- Full house — The full house comprises a triple (three of a kind) and a pair. The triple can be any one of the thirteen ranks, and consists of three of the four suits. The pair can be any one of the remaining twelve ranks, and consists of two of the four suits. Thus, the total number of full houses is:
- Flush — The flush contains any five of the thirteen ranks, all of which belong to one of the four suits, minus the 40 straight flushes. Thus, the total number of flushes is:
- Straight — The straight consists of any one of the ten possible sequences of five consecutive cards, from 5-4-3-2-A to A-K-Q-J-10. Each of these five cards can have any one of the four suits. Finally, as with the flush, the 40 straight flushes must be excluded, giving:
- Three of a kind — Any of the thirteen ranks can form the three of a kind, which can contain any three of the four suits. The remaining two cards can have any two of the remaining twelve ranks, and each can have any of the four suits. Thus, the total number of three-of-a-kinds is:
- Two pair — The pairs can have any two of the thirteen ranks, and each pair can have two of the four suits. The final card can have any one of the eleven remaining ranks, and any suit. Thus, the total number of two-pairs is:
- Pair — The pair can have any one of the thirteen ranks, and any two of the four suits. The remaining three cards can have any three of the remaining twelve ranks, and each can have any of the four suits. Thus, the total number of pair hands is:
- No pair — A no-pair hand contains five of the thirteen ranks, discounting the ten possible straights, and each card can have any of the four suits, discounting the four possible flushes. Alternatively, a no-pair hand is any hand that does not fall into one of the above categories; that is, any way to choose five out of 52 cards, discounting all of the above hands. Thus, the total number of no-pair hands is:
- Any five card poker hand — The total number of five card hands that can be drawn from a deck of cards is found using a combination selecting five cards, in any order where n refers to the number of items that can be selected and r to the sample size; the '!' is the factorial operator:
This guide is licensed under the GNU Free Documentation License. It uses material from the Wikipedia.
Royal Flush Poker Probability
Home > 5 Card Poker probabilities